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Magnetoplasmons in layered graphene structures
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We calculate the dispersion equations for magnetoplasmons in a single layer, a pair of parallel layers, a
graphite bilayer, and a superlattice of graphene layers in a perpendicular magnetic field. We demonstrate the
feasibility of a drift-induced instability of magnetoplasmons. The magnetoplasmon instability in a superlattice
is enhanced compared to a single graphene layer. The energies of the unstable magnetoplasmons could be in
the terahertz (THz) part of the electromagnetic spectrum. The enhanced instability makes superlattice graphene

a potential source of THz radiation.
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I. INTRODUCTION

Recent advances in fabrication techniques have made it
possible to produce graphene, which is a two-dimensional
(2D) honeycomb lattice of carbon atoms forming the basic
planar structure in graphite.! Graphene has stimulated con-
siderable theoretical interest as a semimetal whose electron
effective mass may be described by an unusual massless
Dirac-fermion band structure. Several many-body effects in
graphene have been investigated.”* The theory of Weiss os-
cillations in the magnetoplasmon spectrum of Dirac electrons
in graphene has been developed in Ref. 5. The magnetoplas-
mon excitations in graphene for filling factors »<<6 has been
calculated in Ref. 6. In recent experiments, the integer quan-
tum Hall effect (IQHE) has been reported.” Quantum Hall
ferromagnetism in graphene has been investigated from a
theoretical point of view.® Graphene has a number of inter-
esting properties as a result of its unusual band structure,
which is linear near two inequivalent points (K and K') in
the Brillouin zone. In the presence of a magnetic field, the
graphene structure dramatically affects both the Shubni-
kov—de Haas oscillations® and the step pattern of the IQHE.'?
Both these effects have recently been reported experi-
mentally.” The spectrum of plasmon excitations in a single
graphene layer embedded in a material with effective dielec-
tric constant g, in the absence of an external magnetic field
has been calculated in Ref. 11. In this paper, we show that
features, such as charge-density oscillations, arise when a
magnetic field is applied.

This paper is organized as follows. In Sec. II, we analyze
the magnetoplasmon spectrum for a single graphene layer.
The collective charge-density excitations in a strong mag-
netic field for a graphite bilayer and a bilayer graphene are
calculated in Secs. III and IV, respectively. The enhancement
of the magnetoplasmon instability in an infinite periodic
graphene superlattice is investigated in Sec. V. In these cal-
culations, we assume that there is no tunneling between the
graphene layers forming the superlattice. The results of our
numerical calculations are presented in for each structure in-
vestigated. A brief discussion of plasmon instabilities in
graphene is presented in Sec. VI.
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II. SINGLE GRAPHENE LAYER

Let us first consider electrons in a single graphene layer in
the xy plane in a perpendicular magnetic field B parallel to
the positive z axis. Here, we neglect the Zeeman splitting and
assume valley energy degeneracy, describing the eigenstates
by two pseudo spins.!®%!> We have an effective 2 X 2 matrix

Hamiltonian I:I(o) whose diagonal elements are zero and
whose off-diagonal elements are 7, *i7r,, where 7=—iiV
+eA, —e is the electron charge, A is the vector potentlal
Vp= =\3at/ (24) is the Fermi velocity with a=2.566 A denot-
ing the lattice constant, and t=2.71 eV is the overlap inte-

gral between nearest-neighbor carbon atoms.!”

Choosing A=(0,Bx,0), the eigenfunctions of I:I(O) are la-
beled by a={k,,n,s(n)}, where n=0,1,2,-- is the Landau-
level index, k), is the electron wave vector in the y direction,
and s(n), which is defined by s(n)=0 for n=0 and
s(n)==*=1 for n>0, labels the conduction (+1) and
valence (-1 and 0) bands, respectively. The eigenfunction
Yo(r) is given by a spinor #,(x,y) with components
given by!® yV=c, e’kﬂs(n)t” '®,_ (x+12k )/\L and ¢/2
=C, e"i"d (x+lHk )/\L Here, I,;= \% and L, are nor-
malization lengths. We have C,=1 for n=0, C, —1/ \2 for
n>0, and ®,(x)=(2"n! 7wl 2e- W 2L (x/1,), where
H,(x) is a Hermite polynomial. The eigenenergies are given
by €,=s(n)e,=s(n)(hvp/l;)\2n, for which successive levels
are not equally separated.'?

The dynamic dielectric function in random-phase approxi-
mation (RPA)'* is given by &(q,w)=1-V_.(¢g)Il(g,w), where
g is the in-plane wave vector, V,(q)=2me?/(g,q) is the 2D
Coulomb interaction, and the 2D polarization function is

H(q’w) _ 858v E E 2 fx(n)n_fsl(nr)n

27TlHn =0 1’20 s(n),s' (n") fiw+ Es(n)n — ' (n")n’
sz(n)s’(n’)(n’n,yq), (l)

where f,), is the Fermi-Dirac function, F,,(n,n') arises
from the overlap of eigenstates and is given by!?
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FIG. 1. Magnetoplasmon excitation energy as a function of
wave vector, in units of l,",l, in a single graphene layer. (a) Real
frequency solution. (b) The real and imaginary parts of the fre-
quency satisfying the dispersion equation.
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The magnetoplasmon dispersion relation for a single
graphene layer was obtained by seeking the solutions of
e(q,w)=0. The highest valence band is full and all others
empty at 7=0 K. Transitions to the lowest five Landau lev-
els in the conduction and valence bands were the only single-
particle excitations included in our calculations. Figure 1(a)
is the solution of the dispersion equation for a single layer of
graphene when the imaginary part of the magnetoplasmon
frequency is zero. In this case, the magnetoplasmons are self-
sustaining oscillations except when they enter the particle-
hole mode region, where they undergo a loss due to Landau
damping. In Fig. 1(b), we plot the solutions of the dispersion
when the frequency is complex, for which the real part that is
linear in ¢ and exists only where the magnetoplasmon in Fig.
1(a) has negative group velocity. The real and imaginary
parts of the frequency are denoted by wy and w;>0, respec-
tively. The loss corresponds to the finite imaginary part of
frequency. This instability after excitation is due to a transfer
of energy back from a magnetoplasmon to an electric current
which excites it, thereby making this collective mode un-
stable [see Fig. 1(b)]. Thus, we have a nonzero imaginary
part of the frequency for a single graphene layer in a mag-
netic field. The nonzero imaginary part for collective excita-
tions for a 2D electron gas (2DEG) in semiconductors has
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been established, out only for several layers of semiconduc-
tor (see Refs. 17-20).

The negative group velocity for gly>1 is caused by the
magnetic field.>! We used the same parameters, which were
employed in calculating Fig. 1, but we summed over a larger
number of Landau levels in the conduction and valence
bands. Qualitatively, the results are the same. The main dif-
ferences are that the number of allowed single-particle exci-
tations has increased and the frequency of the highest mode
has become larger since it is affected by the number of Lan-
dau levels included in the sum. However, the lower branches
of collective modes do not change significantly. Therefore,
our approach to include the five lowest Landau levels in the
conduction and valence bands in our calculations is justified.

III. GRAPHITE BILAYER

While the electron effective mass in a graphene single
layer is zero, a graphite bilayer consisting of a pair of parallel
graphite layers with interplanar separation ¢/2 implies finite
electron mass. The electron spectrum, for a graphite bilayer
in a magnetic field is very much different from the case of a
single graphene layer. This is caused by interlayer hopping.
Here, c¢/a=2.802 with a=2.566 A denotes the lattice
constant.”? The nearest-neighbor tight-binding approximation
yields a gapless state with parabolic bands touching at the K
and K’ points instead of conical bands.?>>* A graphite bilayer
can be treated as a gapless semiconductor. The eigenfunction
i, (r) of an electron in a graphite bilayer, in a perpendicular
magnetic field is given for low-lying energy excitations by>*

2
) = %ei’{v}' D, (x+ lHky)2 , 3)
« \J’Ly s(n)Q,®,_»(x+ lHky)
where a={k,,n,s(n)}, Cb)—l when n=0 or n=1, and C(b)
=1/\2 when n=2. Also 0,=0 when n=0 or n=1, Q,,—l
when n=2 and ®,(x) is defined as before. The correspond-
ing eigenenergy is egﬁ=s(n)6£lb)=s(n)ﬁwc\f'n(n—1), where
w.=eB/m with m=v,/(2v%), =039 eV, and v=8
X 10° m/s (Ref. 24) (compare to the electron spectrum in
magnetic field in a single graphene layer presented above).
Following the procedure described above, it can be seen
that the RPA dielectric function (g, w) for a graphite bi-
layer can be found if we replace the polarization I1(g,w) by
I1%)(g,») and use the eigenspectrum enlfg(n) instead of €, .,
in Eq. (1). In addition, the form factor F(n,n’,q) should be
replaced by

f dx expliq.x]®,(x)

(b) _ (b ~(b)y2
FOmn' .g) = A(CY C) (

2

XD, (x+15g,) | + |s(n)s' (n)Q0,0,

)
4)

The eigenfunction of bilayer Bernal graphene presented in

X f dx explig x]®, 2 (x) D, (x + [3q,)
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FIG. 2. Magnetoplasmon dispersion relation in a graphite bi-
layer at filling »=1 and D/ly=0.1.

Eq. (3) was obtained in Ref. 24 by taking into account the
interlayer Coulomb interactions, whose dominant contribu-
tions are included. These are due to the nearest-neighbor
intralayer hopping (see Fig. 1 in Ref. 24). The interlayer
Coulomb interactions are included in Eq. (4) (Ref. 25)
through the wave functions of Eq. (3). In Fig. 2, we present
the dispersion relation. The four straight lines correspond to
the single electron transitions between different Landau lev-
els. Three curved lines are the undamped magnetoplasmon
excitations. For a range of wave vectors, the group velocity
is negative due to the magnetic field, a result similar to those
in a single graphene layer. The transfer of energy between
collective excitations and electrons appears only when the
charged particle velocity has the same value as the phase
velocity of the collective mode.

IV. BILAYER GRAPHENE

For bilayer graphene with layer separation D and no in-

terlayer hopping, we have the dispersion equation!!16-26:27
sinh*(¢D) [2Vc(q)H1 (g.w)— - coth(qD)]
€p
X |:2V((Q)H22(q’w) - % - COth(CID):| = l, (5)
b

where I1;/(q,w) is the polarization function of the charge
carriers on the first j=1 or the second j=2 graphene layer
defined by Eq. (1). We observe that in the limit gD> 1, Eq.
(5) reduces to the dispersion equation for magnetoplasmons
in a single graphene layer. If I1;,(g, w)=11,,(g, w)=11(g, w),
and g,=g,=g,, then we get from Eq. (5):

{2V(@T(g, @) = 1](1 = €724P) = (1 + 21P)} = = 2e79P,
(6)

The dispersion relation for magnetoplasmons in bilayer
graphene is presented in Fig. 3. These results show that each
originally degenerate magnetoplasmon mode in each layer of
an isolated single graphene layer is shifted from their value
by the interlayer Coulomb interaction. For a range of wave
vectors, the group velocity is negative due to the magnetic
field, analogous to the magnetoplasmon modes in a single
graphene layer. A region of instability also exists for bilayer
graphene.
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FIG. 3. Magnetoplasmon dispersion relation for bilayer
graphene at 7=0 K with separation D=1[y. Only the highest Landau
level in the valence is occupied and completely full.

V. INFINITE PERIODIC GRAPHENE SUPERLATTICE

Let us consider an infinite periodic graphene superlattice
consisting of 2D layers parallel to the xy plane and located at
z=ld, where [=0,*1,%2,--+ *+o and d is the period. The
layers are embedded in a medium with background dielectric
constant g,. The dispersion equation may be calculated in
RPA in the same way described in Refs. 15 and 28. It may be
shown that the dispersion relation for magnetoplasmons in a
superlattice is obtained by solving 1-V.(¢)Il(g,w)S(q.k,)
=0, where Il(g,w) is the polarization function for a single
graphene layer defined by Egs. (1) and (2). Also, S(g,k.) is
the structure factor determining the phase coherence of the
collective excitations in different layers given by S(q.k.)
=sinh(gd)/[cosh(gd)—cos(k,d)]. Note that the periodicity
ensures that S(g,k;) is independent of the layer index I. Also,
the effective-mass model is employed to represent the low-
frequency electron band structure of the layered graphene. At
small separations, the low-energy bands may be modified by
the interlayer atomic interactions. In this case, the Landau
levels may be dispersive in the k, wave vector.

We have solved the magnetoplasmon dispersion equation
in the complex-frequency plane. We present only the imagi-
nary part of the solution for various values of d//y in Fig. 4
for kl;=0.1.

The results of our numerical calculations for an infinite
graphene superlattice show that there are magnetoplasmon
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FIG. 4. The imaginary part of the magnetoplasmon energy in a
single graphene layer compared to the results for an infinite super-
lattice of graphene layers at v=1 and k,/;=0.1 for superlattice pe-
riods d=0.251y, d=0.51y, and d> 1.
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modes and modes independent of the wave vector corre-
sponding to single-particle transitions between Landau lev-
els. Due to a magnetic field, the group velocity is negative,
as seen over a given range of wave vectors. This is analogous
to the magnetoplasmons in a single graphene layer. Energy
transfer from a charged particle to the collective modes oc-
curs only when the charged particle’s velocity has the same
value as the phase velocity of the collective mode. The most
energetic collective mode increases for small wave vectors
qly<1 and is Landau damped for large wave vectors. It is
shown in Fig. 4 that the imaginary part of the collective-
mode frequencies responsible for the magnetoplasmon insta-
bility is appreciably enhanced in an infinite superlattice of
graphene layers compared to the single layer. Both the real
and imaginary parts of the magnetoplasmon frequencies are
much larger in a graphene superlattice than in a single
graphene layer due to the superposition of the collective
modes corresponding to oscillations from different layers oc-
curring in phase. The amplification of the collective-mode
frequencies increases when a/ly decreases. According to
Fig. 4, it is clearly shown that the amplification of magneto-
plasmons is increased as a/ly is reduced. When a/ly=0.25,
the magnetoplasmon frequencies are about twice as large
compared to those at a/ly— . For a/ly=0.5, these corre-
sponding frequencies are larger by a factor of 1.5 relative to
the result when a/ly— .

While the 2D energy band is not suitable for describing
the low-frequency electronic properties of bulk graphite,”
the calculated magnetoplasmon frequencies obtained from
our superlattice model are valid. This is the case because the
separation between neighboring graphene layers in the super-
lattice is much larger than in bulk graphite. In a graphene
superlattice, the distance between graphene layers can be
sufficiently large, e.g., as assumed in Fig. 4 d=0.25ly, d
=0.51y, or d=1y (e.g., ;=66 A at B=15 T), which is larger
compared to the distance between carbon layers in bulk
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graphite, which is ¢/2, where ¢/a=2.802 with a=2.566 A
denoting the lattice constant. The significance of this en-
hanced magnetoplasmon instability in superlattices of
graphene for device applications may lie in possibly utilizing
the energy of the amplified plasma modes for electromag-
netic radiation in the THz regime, leading to a potential
source of radiation based on superlattices of graphene layers.
For example, with an applied magnetic field B=10 T, corre-
sponding to filling factor v=1, the magnetoplasmon fre-
quency is about 3.6 THz. Moreover, the advantage of such
sources of THz radiation is the fact that the frequencies cor-
responding to magnetoplasmon instability leading to THz
electromagnetic radiation decrease when applied magnetic
field increases and the parameter a/l/y decreases, which re-
sults in the possibilities of controlling the THz radiation fre-
quencies by changing the applied magnetic field.

VI. DISCUSSION

We emphasize the appearance of a magnetoplasmon insta-
bility in a single graphene layer even without the application
of an in-plane current driving the charge carriers. This insta-
bility corresponds to the finite imaginary part in the fre-
quency of the collective excitations in Fig. 1. There is a
plasmon instability in a bilayer semiconductor without an
in-plane current, which appears only in a very small region
(compared to the Fermi wave vector) of the wave vector.
This difference in the spectrum of collective excitations in
graphene structures compared to layered semiconductors is
caused by the screening properties of the dielectric function
in graphene!!'** and 2D semiconductors.?!
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